Barycentric coordinates for convex polytopes

نویسنده

  • Joe D. Warren
چکیده

An extension of the standard barycentric coordinate functions for simplices to arbitrary convex polytopes is described. The key to this extension is the construction, for a given convex polytope, of a unique polynomial associated with that polytope. This polynomial, the adjoint of the polytope, generalizes a previous two-dimensional construction described by Wachspress. The barycentric coordinate functions for the polytope are rational combinations of adjoints of various dual cones associated with the polytope.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Barycentric coordinates for convex sets

In this paper we provide an extension of barycentric coordinates from simplices to arbitrary convex sets. Barycentric coordinates over convex 2D polygons have found numerous applications in various fields as it allows smooth interpolation of data located on vertices. However, no explicit formulation valid for arbitrary convex polytopes has been proposed to extend this interpolation in higher di...

متن کامل

Power coordinates: a geometric construction of barycentric coordinates on convex polytopes

We present a full geometric parameterization of generalized barycentric coordinates on convex polytopes. We show that these continuous and non-negative coefficients ensuring linear precision can be efficiently and exactly computed through a power diagram of the polytope’s vertices and the evaluation point. In particular, we point out that well-known explicit coordinates such as Wachspress, Disc...

متن کامل

Maximum Entropy Coordinates for Arbitrary Polytopes

Barycentric coordinates can be used to express any point inside a triangle as a unique convex combination of the triangle’s vertices, and they provide a convenient way to linearly interpolate data that is given at the vertices of a triangle. In recent years, the ideas of barycentric coordinates and barycentric interpolation have been extended to arbitrary polygons in the plane and general polyt...

متن کامل

Generalized barycentric coordinates and approximations of convex functions on arbitrary convex polytopes

In this paper, we study the error in the approximation of a convex function obtained via a one-parameter family of approximation schemes, which we refer to as barycentric approximation schemes. For a given finite set of pairwise distinct points Xn := {xi}ni=0 in R, the barycentric approximation of a convex function f is of the form:

متن کامل

Approximations of differentiable convex functions on arbitrary convex polytopes

Let Xn := {xi}ni=0 be a given set of (n + 1) pairwise distinct points in R (called nodes or sample points), let P = conv(Xn), let f be a convex function with Lipschitz continuous gradient on P and λ := {λi}ni=0 be a set of barycentric coordinates with respect to the point set Xn. We analyze the error estimate between f and its barycentric approximation:

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. Comput. Math.

دوره 6  شماره 

صفحات  -

تاریخ انتشار 1996